วันอาทิตย์ที่ 30 สิงหาคม พ.ศ. 2552

เลนส์เว้า


เลนส์เว้า (concave lens) คือ เลนส์ที่มีผิวโค้งเข้าด้านใน มีขอบหนา และตรงกลางบาง แสงที่ผ่านเลนส์เว้าจะกระจายออก เลนส์เว้านำมาใช้ในกล้องโทรทรรศน์, กล้องจุลทรรศน์ และแว่นตา สำหรับในแว่นตานั้น เลนส์เว้าช่วยปรับสายตาสำหรับคนสายตาสั้นได้ เลนส์เว้าสามารถสร้างภาพเสมือนได้
เลนส์เว้า สามารถแบ่งออกได้เป็น 3 ประเภทคือ
เลนส์เว้า 2 ด้าน
เลนส์เว้าแกมนูน
เลนส์เว้าแกมระนาบ
นิโคลัสแห่งคูซา เชื่อว่าเขาเป็นคนแรกที่ค้นพบประโยชน์ของเลนส์เว้าในการรักษาสายตาสั้น เมื่อ ค.ศ. 1451
เปรียบเทียบ: เลนส์นูน

[แก้] ภาพที่เกิดจากเลนส์เว้า
วัตถุอยู่ไกลมาก แสงจากวัตถุขนานกับแกนมุขสำคัญ หักเหผ่านเลนส์เว้า เป็นรังสีปลายบานเข้าสู่ตาผู้สังเกต ผู้สังเกตจะมองเห็นภาพที่จุดโฟกัสเสมือนเป็นภาพเสมือน ขนาดเล็กมาก ข้างเดียวกับวัตถุ
ไม่ว่าวัตถุจะอยู่ที่ใด จะได้ภาพเสมือนหัวตั้ง ขนาดเล็กกว่าวัตถุ และอยู่ด้านเดียวกับวัตถุ

[แก้] สิ่งประดิษฐ์ที่ใช้เลนส์เว้า

วันศุกร์ที่ 14 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่ การเดินทางเป็นเส้นตรง (Rectilinear propagation) , การหักเห (Refraction) , การสะท้อน (Reflection) และการกระจาย (Dispersion) การเดินทางแสงเป็นเส้นตรง ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n) ของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ 2.1
(2.1)โดยที่ คือ ความเร็วของแสงในสูญญากาศ คือ ความเร็วของแสงในตัวกลางนั้นๆ
รูปที่ 2.1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสง
ตัวกลาง
ค่าดัชนีการหักเห
อากาศ
1
เพชร
2.42
แก้ว
1.5 - 1.9
เส้นใยแสง
1.5
น้ำ
1.33
ตารางที่ 2.2 ค่าดัชนีการหักเหโดยปกติของตัวกลางต่างๆการสะท้อน การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ » การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาวดังรูปที่ 2.2
รูปที่ 2.2 การสะท้อนแบบปกติ » การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระดังรูปที่ 2.3
รูปที่ 2.3 การสะท้อนแบบกระจาย โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า "มุมสะท้อนเท่ากับมุมตกกระทบ" ซึ่งแสดงให้ดูในรูปที่ 2.4

-->
รูปที่ 2.4 กฎการสะท้อนของแสงการหักเห การหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ; ) โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ » n1 < n2 แสงจะหักเหเข้าหาเส้นปกติ
รูปที่ 2.5 การหักเหของแสงกรณี n1 < n2 จากรูปที่ 2.5 ระยะเวลาที่แสงใช้ในการเดินทางในช่วง BC จะเท่ากับระยะเวลาที่แสงใช้ในการเดินทางในช่วง B'C' ซึ่งสามารถเขียนเป็นสมการได้ดังสมการ 2.2
(2.2)จากสมการ (2.2) จะได้
(2.3)เมื่อพิจารณารูปสามเหลี่ยม BCC' และ BB'C' จะได้ความสัมพันธ์ทางตรีโกณดังนี้
(2.4)และ
(2.5)นำสมการ (2.4) และ (2.5) แทนลงไปในสมการ (2.3) จะได้
(Snell's Law) » n1 > n2 แสงจะหักเหออกจากเส้นปกติ
รูปที่ 2.6 การหักเหของแสงกรณี n1 > n2 จากรูปที่ 2.6 จะเห็นว่าระยะทาง BC มีค่ามากกว่า B'C' เนื่องจากระยะทาง BC เป็นการเดินทางของแสงในตัวกลางที่มีค่าดัชนีการหักเหน้อยกว่า ดังนั้นในระยะเวลาเท่ากันแสงจะสามารถเดินทางได้มากกว่า » การสะท้อนกลับหมด (Total Internal Reflection) การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ ซึ่งจะส่งผลให้ มีค่าเท่ากับ หรือมากกว่าโดยเราสามารถหาค่า ได้จาก Snell's Law
เมื่อ จะเกิดการสะท้อนกลับหมดของแสงซึ่งจะได้ ดังนั้น
ดังนั้นจะได้
รูปที่ 2.7 การสะท้อนกลับหมดของแสง ในรูปที่ 2.8 แสดงตัวอย่างของการสะท้อนกลับหมดของแสง โดยการมองเครื่องบินที่อยู่ในอากาศจากใต้น้ำ ซึ่งจะสามารถมองเห็นเครื่องบินได้ก็ต่อเมื่อเรามองทำมุมกับผิวน้ำมากกว่า ค่าดังกล่าวได้มาจากการคำนวณมุมวิกฤตดังนี้
รูปที่ 2.8 ตัวอย่างการสะท้อนกลับหมดของแสง จากสมการ แทนค่า n2=1 และ n1=1.33 จะได้
ดังนั้นการมองจะต้องทำมุมกับเส้นปกติน้อยกว่า จึงจะสามารถมองเห็นเครื่องบินได้ ถ้าเรามองทำมุมกับเส้นปกติเท่ากับหรือมากกว่า จะทำให้เกิดการสะท้อนกลับหมดของแสงจึงไม่สามารถมองเห็นเครื่องบินได้ ซึ่งปรากฏการณ์การสะท้อนกลับหมดของแสงนี้จะทำให้แสงสามารถเดินทางไปในเส้นใยแสงได้ การกระจาย ในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"

-->
รูปที่ 2.9 การกระจายของแสงสีขาว การกระจายของแสงนี้จะตั้งอยู่บนความจริงที่ว่า "แสงที่มีความยาวคลื่นต่างกันจะเดินทางด้วยความเร็วที่ต่างกันในตัวกลางเดียวกัน" นอกจากคุณสมบัติดังกล่าวทั้ง 4 ข้อแล้ว แสงยังมีคุณสมบัติอื่นๆ อีกคือ 1. แสงจัดเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic wave) ชนิดหนึ่ง 2. คลื่นแสงเป็นคลื่นมี่มีการเปลี่ยนแปลงตามขวาง (Transverse wave) ซึ่งทั้ง 2 กรณีนี้ ทำให้เราสามารถสรุปได้ว่าคลื่นแสงเป็นคลื่น TEM โดยลักษณะการเดินทางของแสงแสดงในรูปที่ 2.10
รูปที่ 2.10 การเดินทางของคลื่นแสง

วันพฤหัสบดีที่ 6 สิงหาคม พ.ศ. 2552

กล้องถ่ายรูป


เมื่อใช้เลนส์นูนรับแสงจากวัตถุที่อยู่ไกล เช่น ดาวบนท้องฟ้า จะได้ภาพที่คมชัด ปรากฏบนแผ่นกระดาษแข็งสีขาว ขณะที่เลนส์นูนทำหน้าที่เป็นเลนส์ถ่ายรูป แต่แทนที่จะใช้แผ่นกระดาษแข็งสีขาวรับภาพ ก็ใช้ฟิล์มถ่ายรูปแทนพร้อมกันนั้นก็บรรจุอุปกรณ์ทั้งเลนส์และฟิล์มถ่ายรูปลงในกล่องทึบแสงที่ภายในทาสีดำ เพื่อกันแสงจากภายนอกรบกวนและกันการสะท้อนของแสงภายในกล่อง เราจะได้กล่องถ่ายรูปอย่างง่าย